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----------------------------------------------------------------------ABSTRACT------------------------------------------------------------ 

Reinforcement Learning is an important class of optimization which has recently been used in the area of dynamic 

adaptive streaming over HTTP (DASH). Though DASH is very popular method of video delivery in recent years it 

is plagued with problems when multiple players share a bottleneck link. Thus, this area has become a very active 

area of research. Two works which implement Reinforcement Learning in DASH are selected and their 

performances compared against the Conventional DASH player. It is shown that SDP works well for various 

network conditions.  
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I. INTRODUCTION 

At the end of 1979, we first focused on what is now 

known as strengthening learning. This was simply the idea 

of a learning system that wants something, adapting its 

behavior to maximize a particular signal from its 

environment. While reinforcement learning had clearly 

motivated some of the earliest computational learning 

studies, most of these researchers had gone on to other 

things, such as classification of patterns, supervised 

learning, and adaptive control, or had completely 

abandoned learning [33]. As a result, relatively little 

attention was paid to the special issues involved in 

learning how to get something from the environment. 

Since then, the field has come a long way, developing and 

maturing in various directions. 

Reinforcement learning in machine learning, artificial 

intelligence, and neural network research has gradually 

become one of the most active research areas [36]. The 

contributions to establishing and developing relationships 

to the theory of optimum control and dynamic 

programming were particularly important. The general 

issue of learning to attain objectives from interaction is 

still far from being solved, but our knowledge of it has 

been considerably enhanced. We can now position 

constituent concepts, such as temporal-difference learning 

[8], dynamic programming [6], and function 

approximation [4], within a meaningful standpoint to the 

entire problem.  

The Internet traffic [37] due to video applications is 

increasing thanks to the diffusion of new devices such as 

tablets, smart phones, Smart TVs which are connected to 

the Internet through broadband wired and wireless 

connections. Video streaming, in the form of user-

generated video distribution – such as in the case of 

Youtube – or to deliver movies and TV series – such as in 

the case of Netflix – is the application that is driving this 

growth. 

Even though the TCP has been regarded in the past as 

unsuitable to transport video flows, today videos are 

streamed through HTTP with the TCP, and web browsers 

implementing the HTML5 [15] standard are now able to 

reproduce videos without the use of any external plug-in. 

The most common approach to distribute video is the 

progressive download streaming: the video content is 

encoded at a given bitrate and it is sent to the user as any 

other file through a HTTP connection [27]. The issue with 

this approach is that, even though TCP connections [2] are 

elastic, the video content transported through the TCP 

socket is not elastic; thus, a persistent mismatch between 

the encoding bitrate and the net-work available bandwidth 

may result in playout interruptions. Another drawback of 

such an approach is that mobile devices, such as tablets or 

smart phones, may not be able to play a high definition 

video due to their limited computational resources. 

To tackle these issues, the video content must be made 

adaptive [24], [18], [23], [22], [20], [21]. Among the 

approaches proposed so far, the stream-switching is 

gaining momentum due to its deployment and 

implementation simplicity. With this approach, the video 

is encoded at different bitrates and resolutions, the video 

levels, and the encoded videos are logically or physically 

divided into segments of fixed durations. The stream-

switching controller decides, for each video segment, the 

video level to be streamed, see Figure 1. 

 
 

Fig. 1. Conventional Adaptive Streaming 

From the architectural standpoint, two different 

approaches can be used to implement a stream-switching 

algorithm: the client-side, that places the controller at the 
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client, and the server-side, that implements the controller 

at the server. It has been shown that the client-side 

algorithms proposed so far generate an on-off traffic 

pattern at steady-state that can lead to unfairness when 

many video flows share a bottleneck (see Figure 2) [14], 

[25], [16]. Moreover, in [1] it has been established that the 

adaptive video players of three popular video streaming 

services were not able to get a fair share when coexisting 

with a TCP greedy flow. Authors name this issue the 

“downward spiral effect” and ascribe its cause to the on-

off traffic pattern described above; authors suggest 

increasing the segment size and filter bandwidth estimates 

to tackle this issue. 

 

Fig. 2. Bottleneck Links in video distribution 

In the presence of competing HTTP-based adaptive 

streaming (HAS) clients the TCP throughput does not 

always faithfully represent the fair-share bandwidth [25]. 

Three performance issues that can take place when two or 

more adaptive streaming players share a network 

bottleneck and compete for available bandwidth are 

instability, unfairness and utilization [25] It is shown that 

in the case of two competing video flows Adaptive video 

streaming players provide a received video rate that 

oscillates around the fair share, but with an increased 

number of video level switches [14]. Depending on the 

temporal overlap of the ON-OFF [16] periods among 

competing players, they may not estimate their fair share 

correctly. In the case where both players overestimate their 

fair share, they may request a video representation with a 

higher bitrate than the fair share, which causes network 

congestion. Consequently, the players measure that their 

TCP throughput is lower than their previous fair share 

estimate, and so switch down to a lower video bitrate 

level. This creates a repeating oscillatory scenario, so 

inducing instability.  

A scenario can also occur where some players are 

requesting chunks with lower bitrates than the other 

players. This can occur as some players observe a 

throughput lower than the fair share, while others observe 

a throughput that is more than the fair share. This means 

that some players overestimate its fair share. When some 

players overestimate their fair share, it can be that the 

system of players converge to a stable equilibrium, but 

unfair [1]. This occurs as the players with the larger fair 

share estimates request higher bitrate video levels. Even in 

the case where two players estimate their fair share 

correctly, bandwidth underutilization can still be 

prevalent. This occurs as both players request the same 

lower video bitrate level, which causes underutilization, 

even though stability and fairness still exist. In reality, 

several other factors can play an important role in the 

appearance and extent of instability, unfairness and 

underutilization, such as the exact player adaptation 

algorithm, TCP dynamics, bandwidth fluctuations, and the 

variability of the video encoding rate.  

We group these problems into three categories: The first 

relates to the stability of the players in terms of requested 

bitrates and video quality. The second is the unfairness 

among competing players. The third is the potential 

bandwidth underutilization when multiple adaptive players 

compete. They are described as follows: 

Instability: The instability [25] for player 𝑖 at time 𝑡 is 

given in Equation below, where 𝑤(𝑑)  =  𝑘 – 𝑑 is a weight 

function that puts more weight on more recent samples. 𝑘 is selected as 20 seconds. 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑ |𝑟𝑖,𝑡−𝑑 − 𝑟𝑖,𝑡−𝑑−1| ∗ 𝑤(𝑑)𝑘−1𝑑=0 ∑ 𝑟𝑖,𝑡−𝑑𝑘−1𝑑=0 ∗ 𝑤(𝑑)                
 
Unfairness: Let 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡  be the Jain fairness index (cf. 
Equation 10) calculated on the average received rates [14], 𝑟𝑖, (cf. Equation below) at time  𝑡 over all players. The 

unfairness at time t is defined as √1 −  𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡 . A lower 

value implies a fairer allocation. 
 𝑟𝑖 =  𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑏𝑦𝑡𝑒𝑠𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                           

 𝐽𝐹𝐼 =   (∑ 𝑟𝑖𝑛𝑖=1 )2𝑛 ∑ 𝑟𝑖2𝑛𝑖=1        
 

The utilization metric [16] is defined as the aggregate 

throughput during an experiment divided by the available 

bandwidth in that experiment (cf. Equation below, where 𝑡𝑝𝑖  is the throuput at time 𝑖 and 𝑏𝑤 is the experimental 

available bandwidth).  

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑡𝑝𝑖𝑛−1𝑖=0𝑏𝑤 . 

 

A discussion on Reinforcement Learning is given in 

Section II. DASH approaches using Reinforcement 

Learning is explored in section III. Experimental setup is 

given in section IV. Results are given in section V and 

finally, the conclusion is given in Section VI. 

II. REINFORCEMENT LEARNING 

Reinforcement learning is learning what to do — how to 

link scenarios to actions — to maximize numerical reward 

amount(s). The learner is not told what actions to take, as 

in most forms of machine learning, but instead, by trying 
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them, he must find out which actions give the most 

reward. In the most exciting and difficult cases, scenarios 

can influence not only the present reward but also the next 

scenario and all the rewards that follow. The fundamental 

concept is merely to capture the most significant elements 

of the actual problem that a learning agent is confronting 

in order to attain a objective. The purpose of the agent is to 

include only these three aspects — sensation, action, and 

goal — in their easiest possible forms without trivializing 

any of them, see Figure 3. 

 

Fig. 3. Reinforcement Learning  

The crux of reinforcement learning is capturing essential 

parts of a problem, when a learning agent interacts with its 

surroundings, while trying to accomplish a goal. The agent 

should be able to "sense" its surroundings and make 

decisions, on the conditions it observes. The agent desires 

to complete one or more goals. In achieving its goals, the 

agent attempts to maximize some reward given the actions 

it takes. Thus, the agent discovers most fruitful actions by 

checking the rewards for each goal. On a stochastic task or 

assignment, each action attempt is done multiple times to 

gain a reliable expected reward estimate [33] considers the 

whole problem of a goal-directed agent interacting with its 

surroundings. Reinforcement learning agents: (a) have 

explicit goals, (b) can sense aspects of their environments 

and (c) can choose actions to influence their environments. 

The trade-off between exploration and exploitation is one 

of the challenges that arise in reinforcement learning and 

not other types of learning. A reinforcement learning agent 

must prefer actions he has attempted in the past and 

discovered to be efficient in generating reward in order to 

achieve its goal(s). To achieve reward, the agent must 

exploit what he already knows, but he must also explore to 

create choices for better action in the future. The agent 

must attempt a variety of actions and gradually favor those 

that seem to be the best. However, each action must be 

attempted many times in a stochastic assignment to obtain 

a credible estimate of its anticipated reward. Another key 

feature of reinforcement learning is that it specifically 

considers entire problem of engaging with an uncertain 

environment by a goal-directed agent [5]. All 

reinforcement learning agents have specific objectives, can 

sense elements of their settings and can choose activities 

to impact their environments.  

Four main sub-elements of the reinforcement learning 

system can be identified: a policy, a reward function, a 

value function and, optionally, an environment model [3]. 

A policy defines the behavior of the learning agent at a 

particular time. A policy is a mapping of actions to be 

taken in those states from perceived environmental states. 

Policies can generally be stochastic. A reward function 

describes the target of a problem of reinforcement 

learning. It maps each perceived state (or state-action pair) 

of the environment to a single number, a reward, 

indicating that that state's intrinsic desirability. The sole 

goal of a reinforcement learning agent is to maximize the 

combined long-term reward it gets. The value function 

specifies the long-term usefulness. The value of a state is 

the total percentage of reward that an agent can expect to 

collect from that state into the future. Values indicate the 

long-term desirability of states and the rewards available 

in those states after taking into account the states that are 

likely to follow [7].  

Rewards are primary in a sense, while values are 

secondary as indicators of rewards. There could be no 

values without rewards, and the only purpose of estimating 

values is to obtain more reward. These are the values that 

we are most concerned with when taking decisions and 

evaluating them. Action choices are made based on value 

judgments [33]. We are looking for actions that bring the 

highest value, not the highest reward, because these 

actions receive the greatest reward for us in the long run. 

The derived amount called value in decision-making and 

planning is the one we are most interested with. 

Regretfully, determining values is much harder than 

determining rewards. The environment basically gives 

rewards directly, but values must be estimated and re-

estimated from the sequences of observations that an agent 

makes throughout his lifetime. A method for the efficient 

estimation of values is the most important component of 

almost all reinforcement learning algorithms. A model of 

the environment is the fourth and final element of certain 

reinforcement learning systems. This is something that 

imitates the environment's behavior. For example, the 

model could predict the resulting next state and next 

reward given a state and action. Modern reinforcement 

learning covers the range from low-level, trial-and-error 

learning to deliberative, high-level planning [33]. 

III. REINFORCEMENT LEARNING DASH-BASED 

APPROACHES 

Researchers in [28], [32], [17] apply reinforcement 

learning in quality selection algorithms for streaming 

video. In multi-player competitive environments these 

reinforcement learning approaches are able to achieve 

fairness. A coordination proxy facilitates co-ordination 

among players. Thus, these approaches fall under network-

assisted DASH. These approaches learn and adapt their 

policy depending on network conditions, yielding low 

overhead. [11] progressively maximize a pre-defined QoE-

related reward function. By utilizing this action, players 

are able to learn an optimal request strategy. An 

autonomous RL-learning agent [26] provides adaptive 

video streaming in best effort networks. The agent learns 

an optimal control strategy regarding user-QoE, without 

the need for implementation of a complex heuristics. 

Researchers in [9] use an original reinforcement learning 

approach to develop better adaptation agents. Agents 



Int. J. Advanced Networking and Applications   

Volume: 11 Issue: 05 Pages: 4386-4392(2020) ISSN: 0975-0290 

4389 

gradually improve, by taking into account, both user’s 

behaviour and usage context. 

A. Method A [35] 

HTTP Adaptive Streaming (HAS) is becoming the de-

facto standard for Over-The-Top video streaming. A HAS 

video consists of multiple segments, encoded at multiple 

quality levels. Allowing the client to select the quality 

level for every segment, a smoother playback and a higher 

Quality of Experience (QoE) can be perceived. Although 

results are promising, current quality selection heuristics 

are generally hard coded. Fixed parameter values are used 

to provide an acceptable QoE under all circumstances, 

resulting in suboptimal solutions. Furthermore, many 

commercial HAS implementations focus on a video-on-

demand scenario, where a large buffer size is used to avoid 

play-out freezes. When the focus is on a live TV scenario 

however, a low buffer size is typically preferred, as the 

video play-out delay should be as low as possible. Hard 

coded implementations using a fixed buffer size are not 

capable of dealing with both scenarios. In this paper, the 

concept of reinforcement learning is introduced at client 

side, allowing to adaptively change the parameter 

configuration for existing rate adaptation heuristics. 

Bandwidth characteristics are taken into account in the 

decision process, thus allowing to improve the client's 

bandwidth-awareness. Focus in this paper is on actively 

reducing the average buffer filling. Authors show that 

using the proposed learning-based approach, the average 

buffer filling can be reduced by 8.3% compared to state of 

the art, while achieving a comparable level of QoE. 

B. Method B [10] 

HTTP Adaptive Streaming (HAS) is becoming the de 

facto standard for Over-The-Top (OTT)-based video 

streaming services such as YouTube and Netflix. By 

splitting a video into multiple segments of a couple of 

seconds and encoding each of these at multiple quality 

levels, HAS allows a video client to dynamically adapt the 

requested quality during the playout to react to network 

changes. However, state-of-the-art quality selection 

heuristics are deterministic and tailored to specific 

network configurations. Therefore, they are unable to cope 

with a vast range of highly dynamic network settings. In 

this letter, a novel Reinforcement Learning (RL)-based 

HAS client is presented and evaluated. The self-learning 

HAS client dynamically adapts its behaviour by 

interacting with the environment to optimize the Quality 

of Experience (QoE), the quality as perceived by the end-

user. The proposed client has been thoroughly evaluated 

using a network-based simulator and is shown to 

outperform traditional HAS clients by up to 13% in a 

mobile network environment. 

IV. EXPERIMENTAL SETUP 

A virtual network is setup on the same host machine 

creating a custom emulation framework. Our setup 

consists of client players, video servers, and a bottleneck 

link. The server resides on a Windows 10 machine. All 

experiments are performed on a Windows 10 client with 

an Intel(R) Core(TM)i7-5500U CPU 2.40GHz processor, 

16.00 GB physical memory, and an Intel(R) HD Graphics 

processor. It serves video data to the client(s) who are on a 

Ubuntu operating system hosted on VMware. The virtual 

machine is allocated 12GB of physical memory.  

TAPAS [13] is installed on Ubuntu 15.04 Linux. The 

TAPAS Adaptive Video Controller client makes different 

video segment bitrate level requests to the Apache server. 

TAPAS allow multiple instances of the player to be 

created enabling multi-client scenarios. This work 

involves the interaction between adaptive streaming 

algorithm at the controller and TAPAS player (cf. Figure 

6). All traffic between clients and servers go through the 

bottleneck, which uses VMware settings which allow 

bandwidth limits to be set during the experiment. TAPAS 

support both the HTTP Live Streaming (HLS) and 

Dynamic Adaptive Streaming over HTTP (DASH) format. 

Algorithms that uses Method A and Method B was tested 

and shown to work on both MPEG-DASH [34], and Apple 

HTTP Live Streaming (HLS). This makes it useful for 

video on demand (VOD) [29] and live streaming [12], for 

example, real-time video chats. However, the MPEG-

DASH standard is used for testing in this research paper, 

because it makes the experiments more comparable to the 

ones in the research literature, for example, [30]. 

 

Fig. 4. TAPAS adaptive player  

The ten-minute-long MPEG-DASH video sequence 

“Elephant’s Dream”1
 is encoded at twenty different 

bitrates, between 46 Kbps to 4200Kbps and five different 

resolutions, between 320x240 to 1920x1080, is used to run 

the experiments (cf. Table II). The video is encoded at 24 

frames per second (fps) using the AVC1 codec [31]. 

Fragment duration of 2s is used and is recorded in the mpd 

playlist accordingly. All the DASH files (.m4s fragments 

and .mpd playlists) are placed on the Apache server. We 

implemented three client-side algorithms in the TAPAS 

controller. The conventional approach is present by default 

and is used as a baseline in which to compare against other 

algorithms. TAPAS is lightweight in built, thus allowing 

the same receiving host to run a large number of separate 

video player instances at the same time at different 

command line interfaces. Thus, it allows the multi-client 

scenarios which are essential to the work in this paper. 

V. RESULTS 

The first experiment illustrates five players competing at a 

20Mbps bottleneck link. Table 1 gives the results. Method 

A outperforms Method B and the Conventional. 
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Table 1 

 Method A Method B Conventional 

Utilization 0.94 0.91 0.68 

Unfairness 0.015 0.021 0.124 

Instability 0.112 0.132 0.311 

 

The second experiment illustrates five players competing 

at a 20Mbps bottleneck link and stopping or pausing 

during the experiment. Table 2 gives the results. Method A 

outperforms Method B and the Conventional. 

Table 2 

 Method A Method B Conventional 

Utilization 0.95 0.90 0.71 

Unfairness 0.009 0.028 0.136 

Instability 0.123 0.137 0.356 

 

The third experiment illustrates five players competing at 

a 100Mbps bottleneck link with increasing number of 

players up to 20. Table 3 gives the results. Method A 

outperforms Method B and the Conventional. 

Table 3 

 Method A Method B Conventional 

Utilization 0.87 0.83 0.59 

Unfairness 0.024 0.030 0.173 

Instability 0.135 0.164 0.384 

 

The fourth experiment illustrates five players competing at 

a 20Mbps bottleneck link in bandwidth varying 

conditions. Table 4 gives the results. Method A 

outperforms Method B and the Conventional. 

Table 4 

 Method A Method B Conventional 

Utilization 0.85 0.81 0.55 

Unfairness 0.029 0.038 0.398 

Instability 0.161 0.196 0.401 

 

The fifth and final experiment illustrates five players 

competing at a 20Mbps bottleneck viewing different 

videos (note in previous experiments the same video was 

used by all players while in these additional videos were 

used: Tears of Steel, Sintel, Big Buck Bunny and The 

Swiss Account). Table 5 gives the results. Method A 

outperforms Method B and the Conventional. 

Table 5 

 Method A Method B Conventional 

Utilization 0.85 0.81 0.55 

Unfairness 0.029 0.038 0.398 

Instability 0.161 0.196 0.401 

VI. CONCLUSION 

Reinforcement Learning is an important class of 

optimization which has recently been used in the area of 

dynamic adaptive streaming over HTTP (DASH). Though 

DASH is very popular method of video delivery in recent 

years it is plagued with problems when multiple players 

share a bottleneck link. Thus, this area has become a very 

active area of research. Two works which implement 

Reinforcement Learning in DASH are selected and their 

performances compared against the Conventional DASH 

player. It is shown that Reinforcement Learning works 

well for various network conditions. However, one method 

outperforms the others in the experiments conducted. In 

future work multipath schemes [19] should be used 

together with reinforcement learning techniques to better 

DASH-based approaches. 
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